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Reissner-Nordstran-AdS black hole in the GEMS approach
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We obtain a5+2)-dimensional global flat embedding of tk@&+ 1)-dimensional curved RN-AdS space. Our
results include the various limiting cases of global embedding Minkowski s(lBE&S) geometries of the
RN, Schwarzschild-AdS space-time i3 dimensions, Schwarzschild space-time #l5dimensions, purely
charged space, and universal covering space of AdS space-timelirddnensions, through the successive
truncation procedure of parameters in the original curved space.

PACS numbd(s): 04.70.Dy, 04.20.Jb, 04.62v

I. INTRODUCTION I1l, we show that our results in the GEMS of the RN-AdS
space systematically include those of the various limiting
Ever since the discovery that thermodynamic propertie$SEMS geometries, which are the RN, Schwarzschild-AdS,
of black holes in anti—de Sitt¢éAdS) space-time are dual to Schwarzschild, purely charged and AdS space-times,
those of a field theory in one dimension fewer, there haghrough the successive truncation procedure of parameters in
been much interest in the Reissner-NordstrdRN-) AdS the original curved space. These correspond to the dimen-
black ho|e[1], which now becomes a prototype examp|e tosional I‘educ-tion in the GEMS approach. Fina”y, we present
study this AdS/conformal field theofCFT) correspondence @ summary in Sec. V.
[2]. On the other hand, after Unruh’s wofR], it has been

known that the thermal Hawking effect ona curyed manifold Il. GEOMETRIC STRUCTURE OF RN-ADS

[4] can be looked at as an Unruh effect in a higher dimen- IN THE GEMS APPROACH

sional flat space-time. Recently, nontrivial works of isomet-

ric embeddings of the Reissner-NordstrgRN) black hole Let us consider the line element of the four dimensional

[5] and M2-, D3-, M5-brane$6] into flat spaces with two RN-AdS spack[1]
times have been studied to get some insight into the global

aspect of the space-time geometries in the context of brane ds2=f(r,m,e,R)dt>—f~1(r,m,e,R)dr?
physics. Moreover, several authdrg-9] have also shown
that the global embedding Minkowski spat8EMS) ap- —r?(d#?+sir? d¢?), (1)

proach[10-14 of which a hyperboloid in a higher dimen-

sional space corresponds to original curved space could progheref(r,m,e,R) is given by
vide a unified derivation of temperature for a wide variety of

cuLved spaces. These include the static, rotating, charged 5 5
Baros-Teitelboim-Zanelli(BTZ) [15-17, the Schwarzs- Hrm.eR) = 1— 2m e @
child [18] together with its AdS extensions, and the RI9] e r 2 Rr2’

black holes. Therefore, it is interesting to study the geometry

of the RN-AdS and their thermodynamil0] in this GEMS
approach.

In this paper we will analyze the Hawking and Unru
effects of theD =4 RN-AdS space, which has not been tack- : ) .
led up to now due to the complicated structure of this sys—the metric on the universal covering space of Ads), the
tem, in terms of the GEMS approach covering the usuaf@S€ 0fR—< yields the RN metric, and the case mf=0
Kruskal extensiori21]. In Sec. II, we discuss the=4 RN-  andR—ce yields the purely charged metric.

AdS embedding into a seven dimensional flat space. In Sec. To emb_ed this space—time_into a higher dimensional flat
one, we first note that by introducing three coordinates

(z%,2%,2°) in Eq. (10) (see belowthe last term in the metric

This space-time is asymptotically described by AdS, and
h there is an outer horizon at=r. The case ok=0 yields
the Schwarzschild-AdS metric, the casenfe=0 yields
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(1) can be written to give—(dZ%)%—(dZ*)?—(d2°)?=
—dr?—r?(d6’+sirféd¢?). Then, making use of an ansatz

3r,
ri—e?+ —

: i : R?
of two coordinatesZ°, z') in Eq. (10), we have obtained ky(ry,e,R2)= . ~0 ()
2ry
(d2)2— (dZY)2— (d23)2— (d 22— (d 252 is the surface gravity at the rqot é(r,m,e,R)|r:rH=0. In
order to make the form OtEIsf1 in Eq. (1), we subtract the
=f(r,m,e,R)dt?—r?(d6?+sir? 6d ¢?) f~1(r,m,e,R)dr? term from Eq.(3) on the right-hand side
, ’ and add it again to Ed3). Then, the remaining extra radial
(f (r,m,e,R)) part of
L2 e ® £'(rmeR)|?
k2f(r,m,e,R) —
f~1(r,meR)dr’—| 1+ 2 (5

kZf(r,m,e,R)

wheref’(r,m,e,R) denotes the derivative with respectrto can be separated into positive and negative definite parts

and with r>ry as follows:
e? . Fa(r2+rry+r2)(rd—e?)?R*+r8(r3+2R?)] 2
[rrp(r24rry+r2)+(rry—e)R?] 3+ (ri—e?)RP1rr y(r2+rry+r3)+(rry—e?)R?]
. RATC[A(rry—e)RZ+ 100+ 2rr y(r2+rry+2r2)] ,
F3r+(ra—e?)R?[rry(r2+rry+r3) +(rry—e?)R?]
rrg(r2+rr g +r2)@reR2+[3rd + (r2 —e?)R??)
| —— | dr?=(dZ2)?— (dz)?— (dzx)?, ®)
[Bry+(rg—e)R rry(rotrry+rg) +(rry—e®)R7]
|
where we have used the relation between the Arnowitt- 5 .
Deser-Misner mass of the RN-AdS black hole and its event ds2=(d2%)%- >, (dZ)%+(d2)?
horizon radiug =r, i.e., 2n=ry+r2/R?+e?/r . At this =1
stage, it should be note that due to the existence of the last =f(r,m,e,R)dt?—f~(r,m,e,R)dr?
two terms,e-sensitive (1z,)?> and R-dominant (izg)?, one _
may think that superficially two additional time dimensions —r?(d6*+sir*6d¢?) (8)
are needed for a global flat embedding. However, it is in fact
enough to introduce only one time dimensiodz{)? by =ds2. 9)

combining these two terms as

This equivalence between th&+2)-dimensional flat em-
bedding space and original curved space is the very defini-
tion of isometric embedding, mathematically developed by
several author§6,23).

It seems appropriate to comment on the lowest embedding
dimensions in terms of the number of parameters. It is

(d2°)?=(dz)*+(dzp)?, @)

for a desired minim& GEMS with an additional spacelike

dimension (%)% Note also that the C(.Ze).2 [or, (dzr)?]  known from the previous work,13,17 that whenever one
term is shown to be vanished in the limit ef-0 (or, R parameter is increased in the original space, the embedding
—), and the (2°) “becomes zz)” [or, (dZ)°]. As @  dimensions are either unchanged or increased depending on
result, we have obtained a flat global embeddingS2)-  this parameter. In particular, the embedding dimension is
dimensions of the corresponding curved 4-metric as alreadyD =7 for the case of the RN or Schwarzschild-AdS,
which have one less parameters than those of the RN-AdS
case. Therefore, for the case of the RN-AdS the possibly
2In the region ofr>ry,, it can be easily verified that thel¢?)?  lowest embedding dimension B=7.
and [dZ2°)? are positive definite functions, when combined with the  In summary, through the GEMS approach which makes
condition in Eq.(4). the curved space possibly embedded in a higher dimensional
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flat spacg10-14, we have found & =7 dimensional isometric embedding of the RN-AdS space as

2=k, Vf(r,m,e,R) sinhkyt),
zt=k,'Vf(r,m,eR) coshikyt),

zz_J' drR e . r2(r2+rrg+r2)[(r3—e?)2R*+r(r3+2r?)]
[ (P2 1T+ 12) (1T —€)RZ]  r23rA+ (12— €)RZP I w(r2+ 1yt 12) + (f y— )R]

1/2

Z2=r sinf cosa,
Z*=rsindsing,

z°=r cosé,

Zﬁ:f (SRR~ R 10 2rr (124 1y 2r) )
r3ri+(ra—e)RZrry(r2+rry+rf) +(rry—e?)R?]

(P21 g +r2) @S R2+[3ré+ (r3—e?)R212) |2

[3ri+ (ra—e)RArr y(r2+rry+ré)+(rry—e?)R?]

(10

with additional spacelikez? and timelike z® dimensions. It is by now well known that entropy, which is the exten-
Therefore, thé3+1)-dimensional curved space is seen as thesive companion of the temperature, is given by one quarter
hyperboloid embedded in &@+2)-dimensional flat space. It of the horizon are§24]. On the other hand, Laflamnj&5]
would be easily verified inversely that the flat mett® in ~ showed that entropy seen by an accelerated observer in
the (5+2)-dimensional space defined as the coordinét@s  Minkowski space can be obtained from the consideration of
gives the original RN-AdS metri¢l) correctly. the transverse area of a null surface on the wedge. This trans-
Now, following the trajectory ofz?=-.-=2z%=0 in Eq.  verse area would diverge for otherwise unrestricted Rindler
(100 which corresponds to a static trajectory,f,¢  motion due to the integration over the whole transverse di-
=const) in the curved space, the relevBnt 7 acceleration mensions. In an embedded higher dimensional flat space,
a, is described as the Rindler-like moti¢i, 14,17 of the  however, since there are “"embedding” constraints, the re-
form of (21)2—(20)2=a7‘2 in the embedded flat space, i.e., sulting integral may not be divergent and make entropy fi-

nite.
3ré Our RN-AdS case, where there are three additional di-
r2—e2+ _; mensions in the transverse argdz’ . . . dZ°, is correspond-
R ingly subject to four constraints as follows:
T o e o O T B A
2rH\/f(r,m,e,R) (21)2_(20)220’ (14)
As a result, the detector of the above Rindler-like motion 22=1,(r), Z%=fy(r), (15)
would measure the correct Hawking temperature through the
relation of T=a,/27 as follows: (28)%+(2H%+(2%)?=r?, (16)
3rﬁ where f;(r) are explicitly given in Eq.(10). Note that Eq.
ri—e’+ — (14) leads tor =r, . Since thez? andz® integrals subject to
T R 12 the constraints(15), [dZ2dZ®8(z%—f,(r))8(z8—f4(r)), is

B 4wrﬁ [f(r,m,e,R)’ unity, the remaining integrals & (i =3,4,5) well reproduce
the desired areafpﬂrf| of the r=ry sphere. This ends the

in the GEMS approach. Then, the desired BH temperature iglobal flat embedding of the RN-AdS space giving the cor-

given by rect thermodynamics.
3r? I1l. VARIOUS LIMITING GEOMETRIES
2_ 2, H
TH e Now, we are ready to analyze the various limiting geom-
To= Vool = 3 (13)  etries through the successive truncation procedure of the pa-
Amry rametersg, or R (or, both in the original curved space.
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A. RN limit
Let us first consider the RN Iimit19,2€, which is the
case ofR— o in the metric(1),
dsi=fo(r,m,e)dt>—f_1(r,m,e)dr2—r2(d6?+sir? 6d$?),
(17)
where

2

fe(r,me)=f(r,meR—»)=1- T+ —. (18
r

The global flat embedding coordinates can be obtained either
in the GEMS approachi7] starting from the RN metric, Eq.

(17), or in the limit of R—<0 from Eq. (10) directly as

=k, fo(r,m,e) sinh(kyt),
zt=k,1\fo(r,m,e) costikyt),

F2(r 1 )42 (r+r )\ Y
22=jdl’( (ry )+ +)) ,

re(r—r_)

z°=r sinfcose,
4_ . .
Z"=rsin#sing,

z°=r cosé,

5
4rir_

1/2
6_ _ o
‘ fdr(r“(n—r_)z) ’

where the surface gravity is given bigy=ky(ry,e,»)
=(r,—r_)/2r%> with the outer horizonr,=ry, andr.
=m= Jm?—¢e2. In this limit, the R-dominant part ofz° in

19

Eqg. (10) vanishes and the resulting GEMS becomes exactly

the knownD=7 RN one[7]. Note that in the limit ofR

— oo the corresponding event horizon becomes the usual RN

one by rewriting the charge? tor,r_ .

Moreover, the relevarD =7 acceleration and the Hawk-
ing temperature can be obtained either directly from Egs.

(11) and(12) by taking the limit ofR— o and replacings?
with r . r_, or from the Rindler-like motion in th&®=7
GEMS, Egq. (19, following a static trajectory 1(,6,¢
=const) in the curved space as before:

PHYSICAL REVIEW D62 104020

the z2,2° integrals, [dZ2dZ88(z%— f1(r)) (28— f4(r)), are
unity, the remaining integrals give the desired areﬂ,%ll,
that of the corresponding=ry sphere.

B. Schwarzschild-AdS limit

Secondly, the RN-AdS solutiofi0) is also easily reduced
to the Schwarzschild-AdS space, which is the limiting case
of e—0,

dsi=fr(r,m,R)dt?—fz(r,m,R)dr?
—r2(d6?+sir? 6d¢?), (22
where

r2

B 2m
fr(r,mR)=f(r,me=0R)=1— T+ Q

(23

giving anotherD=7 GEMS with the vanishing-sensitive
part of 2% in Eq. (10),

2=k, Vfr(r,m,R) sinhkyt),
zt=k, 1\fr(r,m,R) coshkyt),

) R3+Rr3 ra(r24rry+r2)
z°=| dr— 2 3.2 2 L p2y
Re+3ry Y ri(retrry+rg+Ro)

Z3=r sinfcose,

Z*=rsingsing,

z°=r cos#,

26=J dr

The surface gravityk, = ky(r,0R) = (R?+3r)/2ryR?, is

now either obtained at the roof, of fR(r,m,R)|r=rH=O, or
reduced directly from the Eq4) with e=0. This seemingly
complicated embedding space is first obtained in Ref.

and we have also reached to the exactly same results by the

(R*+10R?r3+9r{)(r2+rry+r2)
(RP+3r3)2(r2+rry+r3+R?)

(24)

r+ —Ir_
a7={(zl)2—(z°)2}‘1’2:2—, (200  systematic reduction process from Ef0).
2ri Vie(r,m,e) On the other hand, similar to the RN limit case, we di-
rectly obtain the Hawking temperature from Eq$1) and

. r2—e? ~ re—r_ 20 (12) by taking the limit ofe—0 as follows:
a3 Jt(r.me)  4mr? \fr,me) ,
3ry
The entropy calculation of the RN is essentially the same a 1+ ?

7

as the previous RN-AdS case. In this case there are three

additional dimensions, and four constraints, i.ez!)t
—(29%=0 leads tor=r_, z2=f,(r,R—x), 28=f,(r,R
—») in Egs.(10) and %)%+ (z*)?+ (z°)%=r2. Thus, since

T:ﬂ:mrrw/fR(r,m,R)' @9

which again equals to that calculated[&V7].
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C. Schwarzschild limit RN-AdS (m, ¢, R)
Thirdly, we can obtain the Schwarzschild limit without D =7 Embedding
the cosmological constant from the RN embedding of Eg. R— o0 60
(19) with e—0 limit or the Schwarzschild-AdS embedding .
of Eq. (24) with R— one. As a result, it is successfully RN (m,e) Schwarzschild-AdS (m, R)
reduced to th® =6 flat GEMS as followg11]: D =7 Embedding D = 7 Embedding
2=k, '1—2mir sinh(k; '), e—0 %
m=0 Schwarzschild (m) m=0
z'=k, 11— 2mir costik;'t), D = 6 Embedding
22=f dryry(r2+rry+ri/re, Charged () mao AdS (R)
D = 5 Embedding D = 5 Embedding
Z8=rsingsing, e 0 e R oo

z*=r sin# cose,

D = 4 Self-Embedding

5_
z>=r cosd, (26) FIG. 1. Various limits of RN-AdS embedding: Trunction con-

. . . nected by solid lines means that through the direct parameter reduc-
where the event horizon is;=2m, and the surface gravity (jons it is possible to obtain all thermodynamic quantities in the
is kyy(ry,0)=1/2r, . Note that the analyticity of*(r) in  jower dimensional embedding system, while truncation connected
r>0 covers the region of <ry. Thus, it should be cau- py dotted lines means that these parameter reductions are only pos-
tioned that the use of incomplete embedding spaces, thatble at the level of metric.

cover onlyr>ry (as, for example, if13]), will lead to

observers there for whom there is no event horizon, no loss 2

2\ —1
of information, and no temperature. dsg=| 1+ ¢ di?—| 1+ e_) dr2—r?(d6?+sir? 6d¢?).
We then obtain the Hawking temperature from E@S) r2 r2
and(21) by taking the limite—0 as follows: (29
a 1 As like the aboveéD =4 covering of the AdS, this has also no
=0 - event horizon. However, we can also embed this space-time
27 8amy1-2m/r into D=5 flat one in view of the accelerating coordinate
frame as follows:
1
To= Vool = _87Tm- (27) 20— /pz—EZSinr( n/e),
It seems appropriate to comment on a global flat embed- 7= \/p?—e2 cosh nle),
ding of D=4 covering of the AdS,
7%= p sinh® cos¥,
r2 p2) 71
dsi= 1+ dt?— 1+ dr? z3=p sinh® sin 6,
—r2(d6?+sir? 6d¢?), (28 z*=p cosh®, (30)

which corresponds to the casemf—0 in Eq.(22). In this  where —wo<z,d<w,—7<f<w. While this coordinate
case we cannot directly obtain a global embedding from Eqgpatch only covers the regigm>e, it can be extended to the
(24) since in the limit of m—0 the surface gravityky entire space similar to the four dimensional AdS chge
=1/2r,=1/4m yields a divergence. As discussed in R&f.  Then, we can easily obtain the temperature asT 2 (a?
in details, this problem originally comes from the fact that —e~2)Y? where the four acceleratiom is given by a
there is no intrinsic horizon of this space-time. However,= p?/e?(p?>—e?).

there is of course the other direct route to embed this space- Furthermore, if we take the limR— c in the metric(28),
time into theD =5 flat space-time starting from the metric or e—0 in the metric(29), we finally reach to the flat four
(22) with m=0. Based on the accelerating coordinate sys-dimensional Minkowski space.

tem, the correct temperature ofZ = (a>— R~ 2)? has been We have summarized all these results in Fig. 1 as a com-
already found(For further details, see Rdf7].) pact diagram, which can be obtained through the systematic

Similar to the pure AdS case, we can directly analyze theruncation procedure from the seven dimensional flat embed-
purely charged case wittm=0 in the metric(17) as ding space.
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IV. SUMMARY Eq. (10) serves a unifying description of the global flat em-
In summary. we have shown that the Hawkin thermalbedding of the various geometries. It would be interesting to
Yy 9 consider other interesting applications of the GEMS, for ex-

properties map into their Unruh equivalents in ftte-2)- . !
dimensional GEMS, which is the lowest possible global em_ample, the rotating Kerr type geometrig, 16,28,29

bedding dimensions of the curved RN-AdS space. The rel-
evant curved space detectors become Rindler ones, whose
temperatures and entropies reproduce the originals. Our re-
sults of the RN-AdS in the GEMS approach include the vari- We are grateful for interesting discussions to Professor G.
ous limiting geometries, which are the Reissner-Norasiro W. Gibbons. Y.W.K. acknowledges financial support from
Schwarzschild-AdS, and Schwarzschild space-times througkOSEF, Y.J.P. from the Ministry of Education, BK21
the successive reduction procedure of the parameters in thi&roject No. D-0055/99, and K.S. for S.N.U. CTP and Min-

ACKNOWLEDGMENTS

original space. As a result, tHg+2)-dimensional GEMS in

istry of Education for BK-21 Project.

[1] B. Carter, inBlack Holes edited by C. M. DeWitt and B. S.
DeWitt (Gordon and Breach, New York, 1973

[2] E. Witten, Adv. Theor. Math. Phy£, 505 (1998.

[3] W. G. Unruh, Phys. Rev. 04, 870(1976; P. C. W. Davies,
J. Phys. A8, 609(1975.

[4] S. W. Hawking, Commun. Math. Phy43, 199 (1974).

[5] S. Deser and O. Levin, Phys. Rev.99, 064004(1999.

[6] L. Andrianopoli, M. Derix, G. W. Gibbons, C. Herdeiro, A.
Santambrogio, and A. Van Proeyen, Class. Quantum Grav.
1875(2000.

[7] S. Deser and O. Levin, Class. Quantum Gii4.L163(1997);
15, L85 (1998.

[8] M. Beciu and H. Culetu, Mod. Phys. Lett. 24, 1 (1999.

[9] P. F. Gonzalez-Diaz, Phys. Rev.@1, 024019(2000.

[10] E. Kasner, Am. J. Math43, 130 (192)).

[11] C. Fronsdal, Phys. Re\L16, 778 (1959.

[12] A. Friedman, Rev. Mod. Phy&87, 201(1965; H. F. Goenner,
in General Relativity and Gravitatiqredited by A. Held(Ple-
num, New York, 1980

[13] J. Rosen, Rev. Mod. Phy87, 204 (1965.

[14] H. Narnhofer, I. Peter, and W. Thirring, Int. J. Mod. Phys. B

10, 1507(1996.

[15] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. L64f.
1849(1992.

[16] S. W. Kim, W. T. Kim, Y.-J. Park, and H. Shin, Phys. Lett. B
392 311(1997.

[17] S.-T. Hong, Y.-W. Kim, and Y.-J. Park, Phys. Rev. &2,
024024(2000; S.-T. Hong, W. T. Kim, Y.-W. Kim, and Y.-J.
Park,ibid. 62, 064021(2000.

[18] K. Schwarzschild, Sitzber. Deut. Akad. Wiss. Berlin, KI.
Math.-Phys. Tech. 1801916.

[19] H. Reissner, Ann. PhydgLeipzig) 50, 106 (1916); G. Nord-
strom, Proc. K. Ned. Akad. WeR0, 1238(1918.

[20] C. S. Peca and J. P. S. Lemos, Phys. Rev5d) 124007
(1999; P. Mitra, Phys. Lett. B459, 119(1999; S. W. Hawk-
ing and H. S. Reall, Phys. Rev. Bl, 024014 (2000; B.
Wang, E. Abdalla, and R.-K. Sibid. 62, 047501(2000.

[21] K. D. Kruskal, Phys. Rev119, 1743(1960.

[22] S. W. Hawking and G. F. R. EllisThe Large Scale Structure
of Space-timgCambridge University Press, Cambridge, En-
gland, 1973.

[23] J. Nash, Ann. Math60, 383 (1954; 63, 20 (1956; C. J. S.
Clake, Proc. R. Soc. LondoA314, 417 (1970.

[24] G. W. Gibbons and S. W. Hawking, Phys. Rev.1B, 2738
(2977.

[25] R. Laflamme, Phys. Lett. B96, 449 (1987).

[26] J. Demers, R. Lafrance, and R. C. Meyers, Phys. Re%2D
2245(1995; A. Ghosh and P. Mitra, Phys. Lett. 857, 295
(1995; S. P. Kim, S. K. Kim, K. S. Soh, and J. H. Yee, Int. J.
Mod. Phys. A12, 5223 (1997; G. Cognola and P. Lecca,
Phys. Rev. D57, 1108(1998.

[27] J. D. Brown, J. Creighton, and R. B. Mann, Phys. Re\a@
6394 (1994).

[28] R. P. Kerr, Phys. Rev. Letfl1, 237 (1963.

[29] Jeongwon Ho, W. T. Kim, Y.-J. Park, and H. Shin, Class.
Quantum Gravl4, 2617(1997; G. Clement, Phys. Rev. b7,
4885(1998; G. Cognola,bid. 57, 6292(1998; V. P. Frolov
and D. V. Fursaev, Class. Quantum Grd®, 2041 (1998
J.-L. Jing and M.-L. Yan, Phys. Rev. 60, 084015(1999; S.

Q. Wu and X. Cai, gr-qc/9907054; S. Mukohyama, Phys. Rev.
D 61, 124021(2000; Z. Li, ibid. 62, 024001(2000.

104020-6



