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Reissner-Nordström-AdS black hole in the GEMS approach
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We obtain a~512!-dimensional global flat embedding of the~311!-dimensional curved RN-AdS space. Our
results include the various limiting cases of global embedding Minkowski space~GEMS! geometries of the
RN, Schwarzschild-AdS space-time in 512 dimensions, Schwarzschild space-time in 511 dimensions, purely
charged space, and universal covering space of AdS space-time in 411 dimensions, through the successive
truncation procedure of parameters in the original curved space.
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I. INTRODUCTION

Ever since the discovery that thermodynamic proper
of black holes in anti–de Sitter~AdS! space-time are dual to
those of a field theory in one dimension fewer, there h
been much interest in the Reissner-Nordstro¨m- ~RN-! AdS
black hole@1#, which now becomes a prototype example
study this AdS/conformal field theory~CFT! correspondence
@2#. On the other hand, after Unruh’s work@3#, it has been
known that the thermal Hawking effect on a curved manifo
@4# can be looked at as an Unruh effect in a higher dim
sional flat space-time. Recently, nontrivial works of isom
ric embeddings of the Reissner-Nordstro¨m ~RN! black hole
@5# and M2-, D3-, M5-branes@6# into flat spaces with two
times have been studied to get some insight into the glo
aspect of the space-time geometries in the context of b
physics. Moreover, several authors@7–9# have also shown
that the global embedding Minkowski space~GEMS! ap-
proach@10–14# of which a hyperboloid in a higher dimen
sional space corresponds to original curved space could
vide a unified derivation of temperature for a wide variety
curved spaces. These include the static, rotating, cha
Bañaos-Teitelboim-Zanelli~BTZ! @15–17#, the Schwarzs-
child @18# together with its AdS extensions, and the RN@19#
black holes. Therefore, it is interesting to study the geome
of the RN-AdS and their thermodynamics@20# in this GEMS
approach.

In this paper we will analyze the Hawking and Unru
effects of theD54 RN-AdS space, which has not been tac
led up to now due to the complicated structure of this s
tem, in terms of the GEMS approach covering the us
Kruskal extension@21#. In Sec. II, we discuss theD54 RN-
AdS embedding into a seven dimensional flat space. In S
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III, we show that our results in the GEMS of the RN-Ad
space systematically include those of the various limit
GEMS geometries, which are the RN, Schwarzschild-Ad
Schwarzschild, purely charged and AdS space-tim
through the successive truncation procedure of paramete
the original curved space. These correspond to the dim
sional reduction in the GEMS approach. Finally, we pres
a summary in Sec. IV.

II. GEOMETRIC STRUCTURE OF RN-ADS
IN THE GEMS APPROACH

Let us consider the line element of the four dimensio
RN-AdS space1 @1#

ds4
25 f ~r ,m,e,R!dt22 f 21~r ,m,e,R!dr2

2r 2~du21sin2 udf2!, ~1!

where f (r ,m,e,R) is given by

f ~r ,m,e,R!512
2m

r
1

e2

r 2
1

r 2

R2
. ~2!

This space-time is asymptotically described by AdS, a
there is an outer horizon atr 5r H . The case ofe50 yields
the Schwarzschild-AdS metric, the case ofm5e50 yields
the metric on the universal covering space of AdS@22#, the
case ofR→` yields the RN metric, and the case ofm50
andR→` yields the purely charged metric.

To embed this space-time into a higher dimensional
one, we first note that by introducing three coordina
(z3,z4,z5) in Eq. ~10! ~see below! the last term in the metric

1We restrict our discussion to the nonextremal case.
©2000 The American Physical Society20-1
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~1! can be written to give2(dz3)22(dz4)22(dz5)25
2dr22r 2(du21sin2udf2). Then, making use of an ansa
of two coordinates (z0, z1) in Eq. ~10!, we have obtained

~dz0!22~dz1!22~dz3!22~dz4!22~dz5!2

5 f ~r ,m,e,R!dt22r 2~du21sin2 udf2!

2S 11

S f 8~r ,m,e,R!

2 D 2

kH
2 f ~r ,m,e,R!

D dr2, ~3!

where f 8(r ,m,e,R) denotes the derivative with respect tor
and
it
en
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e

he

10402
kH~r H ,e,R2!5

S r H
2 2e21

3r H
4

R2 D
2r H

3
.0 ~4!

is the surface gravity at the root off (r ,m,e,R)ur 5r H
50. In

order to make the form ofds4
2 in Eq. ~1!, we subtract the

f 21(r ,m,e,R)dr2 term from Eq.~3! on the right-hand side
and add it again to Eq.~3!. Then, the remaining extra radia
part of

f 21~r ,m,e,R!dr22S 11

S f 8~r ,m,e,R!

2 D 2

kH
2 f ~r ,m,e,R!

D dr2 ~5!

can be separated into positive and negative definite p
with r .r H as follows:
RS e2

@rr H~r 21rr H1r H
2 !1~rr H2e2!R2#

1
r H

2 ~r 21rr H1r H
2 !@~r H

2 2e2!2R41r H
6 ~r H

2 12R2!#

r 2@3r H
4 1~r H

2 2e2!R2#2@rr H~r 21rr H1r H
2 !1~rr H2e2!R2#

D dr2

2S e2
R4r H

6 @4~rr H2e2!R2110r 412rr H~r 21rr H12r H
2 !#

r 4@3r H
4 1~r H

2 2e2!R2#2@rr H~r 21rr H1r H
2 !1~rr H2e2!R2#

D dr2

2S rr H~r 21rr H1r H
2 !„4r H

6 R21@3r H
4 1~r H

2 2e2!R2#2
…

@3r H
4 1~r H

2 2e2!R2#2@rr H~r 21rr H1r H
2 !1~rr H2e2!R2#

D dr25~dz2!22~dze!
22~dzR!2, ~6!
fini-
by

ing
is

ding
g on

is
S,
AdS
ibly

es
onal
where we have used the relation between the Arnow
Deser-Misner mass of the RN-AdS black hole and its ev
horizon radiusr 5r H , i.e., 2m5r H1r H

3 /R21e2/r H . At this
stage, it should be note that due to the existence of the
two terms,e-sensitive (dze)

2 and R-dominant (dzR)2, one
may think that superficially two additional time dimensio
are needed for a global flat embedding. However, it is in f
enough to introduce only one time dimension (dz6)2 by
combining these two terms as

~dz6!25~dze!
21~dzR!2, ~7!

for a desired minimal2 GEMS with an additional spacelik
dimension (dz2)2. Note also that the (dze)

2 @or, (dzR)2#
term is shown to be vanished in the limit ofe→0 ~or, R
→`), and the (dz6)2 becomes (dzR)2 @or, (dze)

2#. As a
result, we have obtained a flat global embedding in~512!-
dimensions of the corresponding curved 4-metric as

2In the region ofr .r H , it can be easily verified that the (dz2)2

and (dz6)2 are positive definite functions, when combined with t
condition in Eq.~4!.
t-
t

st

t

ds7
25~dz0!22(

i 51

5

~dzi !21~dz6!2

5 f ~r ,m,e,R!dt22 f 21~r ,m,e,R!dr2

2r 2~du21sin2udf2! ~8!

5ds4
2 . ~9!

This equivalence between the~512!-dimensional flat em-
bedding space and original curved space is the very de
tion of isometric embedding, mathematically developed
several authors@6,23#.

It seems appropriate to comment on the lowest embedd
dimensions in terms of the number of parameters. It
known from the previous works@5,13,17# that whenever one
parameter is increased in the original space, the embed
dimensions are either unchanged or increased dependin
this parameter. In particular, the embedding dimension
alreadyD57 for the case of the RN or Schwarzschild-Ad
which have one less parameters than those of the RN-
case. Therefore, for the case of the RN-AdS the poss
lowest embedding dimension isD57.

In summary, through the GEMS approach which mak
the curved space possibly embedded in a higher dimensi
0-2
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flat space@10–14#, we have found aD57 dimensional isometric embedding of the RN-AdS space as

z05kH
21Af ~r ,m,e,R! sinh~kHt !,

z15kH
21Af ~r ,m,e,R! cosh~kHt !,

z25E drRS e2

@rr H~r 21rr H1r H
2 !1~rr H2e2!R2#

1
r H

2 ~r 21rr H1r H
2 !@~r H

2 2e2!2R41r H
6 ~r H

2 12R2!#

r 2@3r H
4 1~r H

2 2e2!R2#2@rr H~r 21rr H1r H
2 !1~rr H2e2!R2#

D 1/2

,

z35r sinu cosf,

z45r sinu sinf,

z55r cosu,

z65E drS e2R4r H
6 @4~rr H2e2!R2110r 412rr H~r 21rr H12r H

2 !#

r 4@3r H
4 1~r H

2 2e2!R2#2@rr H~r 21rr H1r H
2 !1~rr H2e2!R2#

1
rr H~r 21rr H1r H

2 !„4r H
6 R21@3r H

4 1~r H
2 2e2!R2#2

…

@3r H
4 1~r H

2 2e2!R2#2@rr H~r 21rr H1r H
2 !1~rr H2e2!R2#

D 1/2

, ~10!
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with additional spacelikez2 and timelike z6 dimensions.
Therefore, the~311!-dimensional curved space is seen as
hyperboloid embedded in a~512!-dimensional flat space. I
would be easily verified inversely that the flat metric~8! in
the ~512!-dimensional space defined as the coordinates~10!
gives the original RN-AdS metric~1! correctly.

Now, following the trajectory ofz25•••5z650 in Eq.
~10! which corresponds to a static trajectory (r ,u,f
5const ) in the curved space, the relevantD57 acceleration
a7 is described as the Rindler-like motion@7,14,17# of the
form of (z1)22(z0)25a7

22 in the embedded flat space, i.e

a75$~z1!22~z0!2%21/25

r H
2 2e21

3r H
4

R2

2r H
3 Af ~r ,m,e,R!

. ~11!

As a result, the detector of the above Rindler-like moti
would measure the correct Hawking temperature through
relation ofT5a7/2p as follows:

T5

r H
2 2e21

3r H
4

R2

4pr H
3 Af ~r ,m,e,R!

, ~12!

in the GEMS approach. Then, the desired BH temperatur
given by

T05Ag00T5

r H
2 2e21

3r H
4

R2

4pr H
3

. ~13!
10402
e

e

is

It is by now well known that entropy, which is the exten
sive companion of the temperature, is given by one qua
of the horizon area@24#. On the other hand, Laflamme@25#
showed that entropy seen by an accelerated observe
Minkowski space can be obtained from the consideration
the transverse area of a null surface on the wedge. This tr
verse area would diverge for otherwise unrestricted Rind
motion due to the integration over the whole transverse
mensions. In an embedded higher dimensional flat sp
however, since there are ‘‘embedding’’ constraints, the
sulting integral may not be divergent and make entropy
nite.

Our RN-AdS case, where there are three additional
mensions in the transverse area,*dz2 . . . dz6, is correspond-
ingly subject to four constraints as follows:

~z1!22~z0!250, ~14!

z25 f 1~r !, z65 f 2~r !, ~15!

~z3!21~z4!21~z5!25r 2, ~16!

where f i(r ) are explicitly given in Eq.~10!. Note that Eq.
~14! leads tor 5r H . Since thez2 andz6 integrals subject to
the constraints~15!, *dz2dz6d„z22 f 1(r )…d„z62 f 2(r )…, is
unity, the remaining integrals ofzi( i 53,4,5) well reproduce
the desired area 4pr H

2 of the r 5r H sphere. This ends the
global flat embedding of the RN-AdS space giving the c
rect thermodynamics.

III. VARIOUS LIMITING GEOMETRIES

Now, we are ready to analyze the various limiting geo
etries through the successive truncation procedure of the
rameters,e, or R ~or, both! in the original curved space.
0-3
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A. RN limit

Let us first consider the RN limit@19,26#, which is the
case ofR→` in the metric~1!,

ds4
25 f e~r ,m,e!dt22 f e

21~r ,m,e!dr22r 2~du21sin2 udf2!,
~17!

where

f e~r ,m,e!5 f ~r ,m,e,R→`![12
2m

r
1

e2

r 2
. ~18!

The global flat embedding coordinates can be obtained e
in the GEMS approach@7# starting from the RN metric, Eq
~17!, or in the limit of R→` from Eq. ~10! directly as

z05kH
21Af e~r ,m,e! sinh~kHt !,

z15kH
21Af e~r ,m,e! cosh~kHt !,

z25E drS r 2~r 11r 2!1r 1
2 ~r 1r 1!

r 2~r 2r 2!
D 1/2

,

z35r sinu cosf,

z45r sinu sinf,

z55r cosu,

z65E drS 4r 1
5 r 2

r 4~r 12r 2!2D 1/2

, ~19!

where the surface gravity is given bykH5kH(r H ,e,`)
5(r 12r 2)/2r 1

2 with the outer horizonr 15r H , and r 6

5m6Am22e2. In this limit, the R-dominant part ofz6 in
Eq. ~10! vanishes and the resulting GEMS becomes exa
the knownD57 RN one @7#. Note that in the limit ofR
→` the corresponding event horizon becomes the usual
one by rewriting the chargee2 to r 1r 2 .

Moreover, the relevantD57 acceleration and the Hawk
ing temperature can be obtained either directly from E
~11! and ~12! by taking the limit ofR→` and replacinge2

with r 1r 2 , or from the Rindler-like motion in theD57
GEMS, Eq. ~19!, following a static trajectory (r ,u,f
5const ) in the curved space as before:

a75$~z1!22~z0!2%21/25
r 12r 2

2r 1
2 Af e~r ,m,e!

, ~20!

T5
r 1

2 2e2

4pr 1
3 Af e~r ,m,e!

5
r 12r 2

4pr 1
2 Af e~r ,m,e!

. ~21!

The entropy calculation of the RN is essentially the sa
as the previous RN-AdS case. In this case there are t
additional dimensions, and four constraints, i.e., (z1)2

2(z0)250 leads tor 5r 1 , z25 f 1(r ,R→`), z65 f 2(r ,R
→`) in Eqs.~10! and (z3)21(z4)21(z5)25r 2. Thus, since
10402
er

ly

N

s.

e
ee

the z2,z6 integrals, *dz2dz6d„z22 f 1(r )…d„z62 f 2(r )…, are
unity, the remaining integrals give the desired area 4pr H

2 ,
that of the correspondingr 5r H sphere.

B. Schwarzschild-AdS limit

Secondly, the RN-AdS solution~10! is also easily reduced
to the Schwarzschild-AdS space, which is the limiting ca
of e→0,

ds4
25 f R~r ,m,R!dt22 f R

21~r ,m,R!dr2

2r 2~du21sin2 udf2!, ~22!

where

f R~r ,m,R!5 f ~r ,m,e50,R![12
2m

r
1

r 2

R2
, ~23!

giving anotherD57 GEMS with the vanishinge-sensitive
part of z6 in Eq. ~10!,

z05kH
21Af R~r ,m,R! sinh~kHt !,

z15kH
21Af R~r ,m,R! cosh~kHt !,

z25E dr
R31RrH

2

R213r H
2A r H~r 21rr H1r H

2 !

r 3~r 21rr H1r H
2 1R2!

,

z35r sinu cosf,

z45r sinu sinf,

z55r cosu,

z65E drA~R4110R2r H
2 19r H

4 !~r 21rr H1r H
2 !

~R213r H
2 !2~r 21rr H1r H

2 1R2!
.

~24!

The surface gravity,kH5kH(r H,0,R)5(R213r H
2 )/2r HR2, is

now either obtained at the rootr H of f R(r ,m,R)ur 5r H
50, or

reduced directly from the Eq.~4! with e50. This seemingly
complicated embedding space is first obtained in Ref.@7#,
and we have also reached to the exactly same results by
systematic reduction process from Eq.~10!.

On the other hand, similar to the RN limit case, we d
rectly obtain the Hawking temperature from Eqs.~11! and
~12! by taking the limit ofe→0 as follows:

T5
a7

2p
5

11
3r H

2

R2

4pr HAf R~r ,m,R!
, ~25!

which again equals to that calculated in@27#.
0-4
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C. Schwarzschild limit

Thirdly, we can obtain the Schwarzschild limit withou
the cosmological constant from the RN embedding of E
~19! with e→0 limit or the Schwarzschild-AdS embeddin
of Eq. ~24! with R→` one. As a result, it is successfull
reduced to theD56 flat GEMS as follows@11#:

z05kH
21A122m/r sinh~kH

21t !,

z15kH
21A122m/r cosh~kH

21t !,

z25E drAr H~r 21rr H1r H
2 !/r 3,

z35r sinu sinf,

z45r sinu cosf,

z55r cosu, ~26!

where the event horizon isr H52m, and the surface gravity
is kH(r H ,0,̀ )51/2r H . Note that the analyticity ofz2(r ) in
r .0 covers the region ofr ,r H . Thus, it should be cau
tioned that the use of incomplete embedding spaces,
cover only r .r H ~as, for example, in@13#!, will lead to
observers there for whom there is no event horizon, no
of information, and no temperature.

We then obtain the Hawking temperature from Eqs.~20!
and ~21! by taking the limite→0 as follows:

T5
a6

2p
5

1

8pmA122m/r
,

T05Ag00T5
1

8pm
. ~27!

It seems appropriate to comment on a global flat emb
ding of D54 covering of the AdS,

ds4
25S 11

r 2

R2D dt22S 11
r 2

R2D 21

dr2

2r 2~du21sin2 udf2!, ~28!

which corresponds to the case ofm→0 in Eq. ~22!. In this
case we cannot directly obtain a global embedding from
~24! since in the limit of m→0 the surface gravitykH
51/2r H51/4m yields a divergence. As discussed in Ref.@7#
in details, this problem originally comes from the fact th
there is no intrinsic horizon of this space-time. Howev
there is of course the other direct route to embed this sp
time into theD55 flat space-time starting from the metr
~22! with m50. Based on the accelerating coordinate s
tem, the correct temperature of 2pT5(a22R22)1/2 has been
already found.~For further details, see Ref.@7#.!

Similar to the pure AdS case, we can directly analyze
purely charged case withm50 in the metric~17! as
10402
.
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ss
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ds4
25S 11

e2

r 2D dt22S 11
e2

r 2D 21

dr22r 2~du21sin2 udf2!.

~29!

As like the aboveD54 covering of the AdS, this has also n
event horizon. However, we can also embed this space-
into D55 flat one in view of the accelerating coordina
frame as follows:

z05Ar22e2 sinh~h/e!,

z15Ar22e2 cosh~h/e!,

z25r sinhF cosu,

z35r sinhF sinu,

z45r coshF, ~30!

where 2`,h,F,`,2p,u,p. While this coordinate
patch only covers the regionr.e, it can be extended to the
entire space similar to the four dimensional AdS case@7#.
Then, we can easily obtain the temperature as 2pT5(a2

2e22)1/2 where the four accelerationa is given by a
5r2/e2(r22e2).

Furthermore, if we take the limitR→` in the metric~28!,
or e→0 in the metric~29!, we finally reach to the flat four
dimensional Minkowski space.

We have summarized all these results in Fig. 1 as a c
pact diagram, which can be obtained through the system
truncation procedure from the seven dimensional flat emb
ding space.

FIG. 1. Various limits of RN-AdS embedding: Trunction con
nected by solid lines means that through the direct parameter re
tions it is possible to obtain all thermodynamic quantities in t
lower dimensional embedding system, while truncation connec
by dotted lines means that these parameter reductions are only
sible at the level of metric.
0-5
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IV. SUMMARY

In summary, we have shown that the Hawking therm
properties map into their Unruh equivalents in the~512!-
dimensional GEMS, which is the lowest possible global e
bedding dimensions of the curved RN-AdS space. The
evant curved space detectors become Rindler ones, w
temperatures and entropies reproduce the originals. Ou
sults of the RN-AdS in the GEMS approach include the va
ous limiting geometries, which are the Reissner-Nordstro¨m,
Schwarzschild-AdS, and Schwarzschild space-times thro
the successive reduction procedure of the parameters in
original space. As a result, the~512!-dimensional GEMS in
.

.
.

B

B

I.

10402
l

-
l-
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re-
-
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Eq. ~10! serves a unifying description of the global flat em
bedding of the various geometries. It would be interesting
consider other interesting applications of the GEMS, for e
ample, the rotating Kerr type geometries@15,16,28,29#.
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